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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards hodies
(ISO member bodies). The work of preparing International Standards is normally carried out through 1SO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
hon-governmental, in liaison with 1SO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission {IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards

adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. 1SO shall not be held responsible for identifying any or all such patent rights,

ISO 10110-14 was prepared by Technical Committee ISO/TC 172, Optics and dptical instruments, .

Subcommittee SC 1, Fundamental standards.

1SO 10110 consists of the following parts, under the general title Optics and optical instruments — P_reparatiorf
of drawings for optical elements and systems: '

— Part 1: General

— Pad 2: Material imperfections — Stress birefringence

— Part 3: Material imperfections — BuBbIes and inclusions
— Part 4: Material imperfections — Inhomqgeneity and striae
— Part 5: Surface form tolerances

— Part 6: Centring tolerances

— Pant7: Surface imperfection folerances

— Part 8: Surface texture

. — Part 9: Surface treatment and coating '

— Péft 1 O.; Table represenfing data of optical elements and cemented aséembl)‘es
— Part 11: Non-toleranced data

~— Part 12: Aspheric surfaces

| —  Part 14: Wavefront deformation tolerance

| — Part 16: Aspheric diffractive surfaces

~— Part 17: Laser irradiation damage threshold
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Introduction

This part of 1ISO 10110 makes it possible to specify a functional tolerance for the performance (expressed in
wavelengths of single-pass wavefront deformation) for an optical system. This tolerance therefore includes the
effect of surface deformations, inhomogeneities, and possible interactions among the various individual errors.

The quality of an optical system depends not only on the quality of the surfaces, but also on several other
factors, such as the homogeneity of the optical material and how the optical surfaces of the system interact
with each other. Because of this effect, the selection of tolerances for individual degradations (such as
surfaces and inhomogeneity) may be difficult. For instance, the effect of glass inhomogeneities upon the
optical quality of a prism depends greatly upon the form and orientation of the inhomogeneities; this is
particularly frue when light passes through the glass in more than one direction, as in the case of a penta-
prism. In the case of a thin optical element, it often happens that the deformations of the rear surface
correspond closely to those of the front surface, due to bending of the system during fabrication.
Unfortunately, it is usually not known in advance that this will be the case, and for this reason, in the absence
of a wavefront deformation tolerance, the tolerances for the individual surfaces of a system must often be very
tight to guard against the possibility that the deformations might add to each other rather than cancel one
another.

It should be noted that it is possible to specify a tolerance on the wavefront deformation only, without
specifying tolerances on the individual surfaces. In this case, the manufacturer must ensure that the wavefront
satisfies the specified tolerance, but is not bound by tolerances on the individual surfaces of the element, and
is free, for instance, to allow the surface deformations to be large provided they cancel each other.

Itis also possible to supply a tolerance for the wavefront deformation, according to this part of ISO 10110, in
addition to tolerances en the individual surfaces andfor inhomogeneity (according to 1SO 10110-5 and
ISO 10110-4, respectively). In this case, the manufacturer must ensure that all of the individual tolerances
(surface deformations and inhomogeneity) are upheld, as well as ensuring that the wavefront is of the
specified quality.

© IS0 2003 — Al rights reserved A4
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INTERNATIONAL STANDARD : ISO 10110-1 4:2003(E)

Optics and optical instruments — Preparation of drawings for
optical elements and systems —

Part 14: |
Wavefront deformation tolerance

1 Scope

International Standard 1SO 10110 applies to the presentation of design and functional requirements for optical
eiements and assemblies in technical drawings used for manufacturing and inspection.

This part of 1SO 10110 provides rules for the indication of the allowable deformation of a wavefront fransmitted
through or, in the case of reflective optics, reflected from an optical element or assembly.

The deformation of the wavefront refers to its departure from the desired shape (“Nominal theoretical
waefront”). The tit of the wavefront with respect to a given reference surface is excluded from the scope of
this part of 1SO 10110,

There is no requirement that a tolerance for wavefront deformation be indicated. If such a tolerance is
specified, it does not take precedence over a tolerance for the surface deformation according to SO 10110-5.
If tolerances for both the surface deformation and the wavefront deformation are given, they must both be
upheld. :

NOTE In this part of ISO 10110, the term “wavefront” used alone stands for either “transmitted wavefront” or
“reflected wavefront”, according to the type of system to be specified.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies. -

ISO 7944:1998, Optics and optical instruments — Reference wavelengths

ISO 10110-1:1996, Optics and optical instruments — Preparation of drawings for optical elements and
systems — Part 1: General

3 Terms and definitions

For the Eurposes of this document, the following.terms and definitions appiy.

31

wavefront deformation

distance between a wavefront transmitted and/or reflected once through, or in the case of reflective optics,
reflected once from, the optical element or assembly under test and the nominal theoretical wavefront,
measured normal to the nominal theoretical wavefront

© IS0 2003 — All rights reserved - ) 1
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NOTE1 Seealso 3.13.
NOTE2  Theilluminating wavefront may be specified to be planar, convergent or divergent. See 7.5 and 7.6.

3.2

peak-to-valley dlfference between two wavefronts

PV difference between two wavefronts _
maximum distance minus the minimum distance between the wavefronts

-

NOTE it is possible that the wavefronts cross, in which case the minimum distance between the wavefronts is a
negative number; the sign must be taken into account in computing the PV difference. _

3.3

total wavefront deformation function

theoretical surface defined by the difference between the wavefront transmitted and/or reflected once through
the optical system under test and the nominal theoretical wavefront, measured normal to the nominal
theoretical wavefront

See Figure ta).

34

approximating spherical wavefront

theoretical spherical wavefront tangent to the exit pupil of the system under test for which the root-mean-
square difference to the wavefront transmitted and/or reflected once through the optical system under test is a
minimum

See Figure 1b).

NOTE 1  For ithe purpose of this definition, "spherical wavefronts” include the “planar wavefront”, (The planar wavefront
is considered to be a particular case of the spherical wavefront.)

NOTE 2  Ses Clause 5 in the case of non-circular test areas.

3.5
wavefront sagitta error
peak-to-valley difference between the approximating sphencat wavefront and the reference sphere

NOTE1  The wavefront sagitta error represents the extent to which the radius of curvature of the approx:mahng
wavefront departs from that of the nominal theoretical wavefront.

NOTE 2 If no restrictions are specified on the location of the image of the optical system under test, the reference
sphere is identical to the approximating spherical wavefront, and the wavefront sagitta error is defined to be-zero.

3.6

wavefront irregularity function

theoretical surface defined by the difference between the total wavefront deformation function and the
approximating spherical wavefront '

See Figure 1c).

37
wavefront irregularity
peak-to-valley difference between the wavefront irregularity function and the plane which best approximates it

NOTE The wavefront irregularity represents the departure of the wavefront from sphericity.

© IS0 2003 = All rights reseived
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3.8
approximating aspheric wavefront
rotationally symmetric aspheric wavefront for which the root-mean-square chfference to the wavefront

_ irregularity functlon isa mlmmurn

See Figure 1d).
NOTE See Clause 5 in the case of non-circular test areas.
a) Measured wavefront deformation function
b) Approximating spherical wavefront, c) Wavefront irregularity function,

which determines the wavefront which determines the wavefront
sagitta error ‘ Irregularity

d) - The (rotationally symmetrié) . @) The wavefront remaining'aﬂer removal

approximating aspheric wavefront, of b) and d), which determines the
which determines the rotationally root-mean-square (rms) wavefront

symmaetric wavefront Irregularity asymmetry

Figure 1 — Example of a measured wavefront and its decomposition into wavefront deformation types

© 1S0 2003 — All rights reserved
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39

rotationally symmetric wavefront irregularity

peak-to-valley difference between the approximating aspheric wavefront -and the plane whlch best
approximates it

NOTE The rotationally symmetric wavefront irregularity is the rotationally symmetric irregularity of the_wavefront
irregularity function. Its value cannot exceed that of the wavefront irregularity function.

310

total rms wavefront deformation
RMSt

root-mean-square difference between the wavefront transmitted once through, and/or reflected once from, the
optical system under test and the nominal theoretlcal wavefront, which includes any specified target
aberratlons :

3.1

rms wavefront irregularity

RMSi .
root-mean-square value of the wavefront irregularity function defined in 3.6

312

rms wavefront asymmetry

RMSa

root-mean-square value of the difference between the wavefront irregularity function and the approximating
aspheric wavefront

See Figure 1e).

313

single-pass :

testing arrangement in which the light beam passes once through, or in the case of reflective optics, is
reflected once by, the element under test

NOTE1{ For comer—cubes roof prisms, cat‘s eyes”, and other types of retroreﬂectors a single retroreﬂectlon frorn ihe
element constitutes a “single-pass” conf iguration, even though the light actually passes through much of the element
twice.

NOTE2  Although the wavefront deformation as defined in 3.1 refers to a “single-pass” measurement, many types of
optical systems are commonly tested in a “double-pass” configuration, in which the light passes through or reflects from
the element twice. In many cases, when an element is testéd in a double-pass configuration, the observed deformation of
the wavefront is approximately twice the wavefront deformation as defined in 3.1. Regardless of how the system is actually
to be tested or used, the tolerance for wavefront deformation always refers to the “wavefront deformation” as defined in
3.1, thatis, asifusedina smgle-pass confi guratlon

NOTE3  When an element of poor optical quality is tested in a double-pass configuration, it is poss:ble that the rays of
the test beam are disturbed sufficiently (for example, made divergent or convergent) so that they do not pass through the
same positions of the test element on the second transmission. In this case, the wavefront deformation is not equal to one-
half the observed deformation, and a precise determination of the (single-pass) wavefront deformation is difficult.

NOTE4 (n some cases, the double-pass wavefront deformation is not even approximately equal to twice the single-
_ pass wavefront deformation. For instance, an optical system containing a wedged prism will convert a test beam of circular
cross-section into one having an elliptical cross-section. When converting between single-pass and double-pass results, it
is necessary to.fake such effects into account.

3.14

. target aberrations

aspheric deformations of the wavefront which have been specified for mclus;on in the nommal theoretical
wavefront

3.15
nominal theoretical wavefront
theoretical wavefront equal fo the reference sphere plus any target aberrations which may be specified

NOTE This is the “Desired shape” of the wavefront mentioned in Clause 1.

4 : © IS0 2003 All rights reserved
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3.16

reference sphere

the theoretical spherical wavefront tangent fo the exit pupil of the system under test, for which the root-mean-
square difference to the wavefront transmitted once through and/or reflected once from the optical system

under test is a minimum, and consistent with any restrictions which may be specified for the Iocatlon of the

image of the system
NOTE 1 See Clause 5 in the case of non-circular test areas.

NOTE 2  If no restrictions are specified on thé image position, the reference sphere is identical to the approximating
spherical surface.

4 Tolerances for wavefront deformation

The tolerances for wavefront deformation are indicated by specifying the maximum permissible values of the
wavefront sagitta error (3.5), wavefront irregularity {(3.7), and/or rotationally symmetric wavefront irregularity
(3.9). In addition, tolerances for three root-mean-square (rms} measures of wavefront deformation may be
specified (see 3.10, 3.11 and 3.12). These rms measures of the wavefront deformation represent the rms
value of the function remaining after the subtraction of various types of wavefront deformation.

The wavefront sagitta error is meaningfu! only when the location of the image is sbeciﬁed. If the location of the
image is left unspecified, the wavefront sagitta error, as defined in 3.5, is defined to be zero, and shall not be

specified.

NOTE1 A method for determmmg the amount of wavefront sagitta error, wavefront irregularity, and rotationally
symmetric wavefront irregularity of a given wavefront using digital interferogram analysis is described in Annex A. Methods
by which these quantities can be estimated using visual interpretation of interferograms are described in Annex B.

NOTEZ A method for ealculating the tolal rms wavefront deformation, the rms wavefront irregularity, and the rms
wavefront asymmetry is described in Annex A. These rms measures of wavefront deformnation cannot be estimated

visually.

5 Non-circular test areas

The peak-to-vailey (PV) and root-mean-square (RMS) wavefront deformation types given in Clause 3 refe to
vaiues calculated within the actual test area. In the case of non-cireufar test areas, these error types shall be
calculated only over the actual test area. . ‘

The.. approximating spherical wavefront (3.4) is the spherical wavefront which best approximates the
wavefront. If the test area is nor=circular, it is important that this approximation be made by a wavefront that is
spherical. In particular, the spherical part of an aspheric approximating function shall not be substituted for the
appraximating spherical wavefront, ' .

The approximating aspheric wavefront (see” 3.8) is the rotationally symmetric wavefront which best
approximates the wavefront irregularity function. If the test area is non-circular, it is important that this
approximation be made by a wavefront thaf is rotationally symmetric. In particular, the rotationally symmetric
part of a non-symmetric approximating wavefront shalt not be substituted for the approxtmatlng aspheric
wavefront (see 3.8).

NOTE1 If the fest area is non-circular, -the various. wavefront deformation types defined im Clause 3 are not
mathamatically orthogonal_ Nevertheless, these wavefront deformation types are well-defined (not amblguous) pravided
the above restrictions are upheld:

NOTE2  Annex A describes a method for calculating the amounts of the various types of wavefront deforrnatlon
regardiess of whether or not-the test area is circular.

© 180 2003 — All rights resetved
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6 Specification of tolerances for wavefront deformation

6.1 General
For the specification of toleranceé for wavefront deformation, the stipulations given in 6.2 0 6.5 apply. .

NOTE It is not necessary that tolerances be specified for all types of wavefront deformation.

6.2 Units

The maximum permissible values for wavefront sagitta error, wavefront irregularity, rotationally symmetric
wavefront irregularity and, if applicable, any target aberrations (3.14) shall be specified in units of
wavelengths. : o ‘

These gquantities are defined with reference to a wavefront passing once through the element under test
(single-pass). See the appropriate definitions given in Clause 3. :

If a specification is to be given for one or more rms wavefront deformation types, the specification shall also
be in units of wavelengths (single-pass). : . :

6.3 Wavelength

Unless otherwise specified, the wavelength is that of the green spectral line of mercury {e-fine),
A= 546,07 nm, according to ISOV7944.-

If other than A = 546,07 nm, the wavelength in Which the wavefront deformation is specified shall be indicated
on the drawing. See Example 2 in Figure 2. See Clause 7.

6.4 Target aberrations

Frequently, the nominal theoretical wavefront is spherical or planar. In some cases, to allow for the presence
of small amounts of residual aberration in the design of an optical system, non-zero target values may be
specified for the polynomial aberration types defined in Annex A. ' S —_—

6.5 Cemented (or optically contacted) elements
If two or more optical elements are to be cemented (or optically ‘contacted), the wavefront deformation

tolerances given for the individual elements also apply for the elements after assembly, i.e. after cementing (or
optically _gpn_ta’cting), unless otherwise specified. See ISO 10110-1:199_6, 48.3. ‘ ' '

7 Indication in drawings

71 ' General

- In all cases in which a tolerance for wavefront deformation is to be indicated, the optical axis of the element
shall be indicated on the drawing according to 1SO 10110-1:1996, 4.2. S
The location of the stop surface or pupil shall be indicated according to 1ISO-10110-1:1996, 5.3. See Figure 2.

The tolerance for wavefront deformation shall be indicated by a code number (sée 7.2) and the indications of
the tolerances for wavefront sagitta error, wavefront irregularity, rotationaily symmetric wavefront irregularity
and rms deformation types, as appropriate {see 7.3). ‘ : -

| For any type of wavefront deformation indicated on the drawing, the specified wavelength shall be indicated in
- accordance with 6.3.

6 _ ©150,2003 — Al rights reserved
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No provision is given for the specification of a PV-tolerance for the total wavefront deformation (that is,

including both the wavefront sagitta error and the wavefront irregularity). If such a specification is necessary,
this information shall be given in a note on the drawing, for example: “Total wavefront deformation shali not

exceed 0,25 wavelength.”

See Clause 8 for examples of tolerance indications.

7.2 Code number

The code number for wavefront deformation is 13/.

13/301)
(=)

N

a) Example 1

P1 932

13£2(0,5); x = 6318
=]

b) Example 2

Figﬂf.e'é — Examples of an indication of a tolerance for wavefront deformation;.
~« with planar illumination ,

©@ 150 2003 — All rights reserved
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7.3 Form of the indication
The indication shall have one of the following fhree forms:
13/A (BIC), A= E
or
13/A (B/C) RMSx < D; 1 = E (where x is one of the letters t, i or a)
or
13/ — RMSx < D; A = E (where x is one of 'th.e Ietters.t, i, or a).

The indication “; A = E” (last element of the three forms of indication specified above) may be omitted provided
the specified wavelength is 1 = 546,07 nm (see 7.1). |

NOTE More than one RMSx value may be specified.
The quantity A is either

. — the maximum permissible (single-pass) wavefront sagitta efror, as defined in 3.5, expressed in wave-
lengths, or .

. — adash (—} indicating that no explicit tolerance for wavefront sagitta error is given.
The quantity B is either

L — the permissible PV value of {single-pass) wavefront irregularity, as defmed in 3.7, expressed in wave-
lengths, or

. — adash (—) indicating that no explicit tolerance for wavefront irregularity is given.

The quantity C is the permissible value of the (single-fnéss) rotationally symmetric wavefront irregularity, as
i defined in 3.9, expressed in wavelengths. If no tolerance is given, the slash (/} is replaced by the final
parenthesis, i.e. 13/A(B). .

If no tolerance is given for the all three deformation types then A, B, C, the divisor line (/) and the parenthesis
are replaced by a single dash (—), i.e. 13/—.

k. The quantity D is the maximum permissible value of the rms quantity of the type specified by x, where x is one
j  of the letters t, | or a. These quantities are defined in 3.10 to 3.12. The specification of more than one type of
rms deviation is allowed. These specifications shall be separated by a semicolon, as shown in Clause 8,
Example 7.
The quantity £ is the wavelength, in nanorn'etres', in which the wavefront deformation is specified.

| The wavefront deformation tolerance indicated applies to the optically effective area, except when the

indication is to apply to a smaller test field for all possible positions within the optically effective area. In this
E case, the diameter of the test field shall be appended to the tolerance indication as follows:

13/A (BIC)RMSx < D (all @..); A= E

{ See Clause 8, Examples 4a) and 4b).

8 ® 150 2003 — All rights reserved
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7.4 Location '

The indication shall be entered near the optical element to which it refers. If necessary, the indication may be
connected to the optical axis by a leader, as shown in Figure 2.

in cases where the optical axis is not normal to the surfaces of the element, it may be necessary to indicate
the test area for wavefront deformation in a cross-section perpendicular to the optical axis. In this case, the
indication of wavefront deformation shall be associated with the test area (see Figure 3).

For elements requiring indications for wavefront deformation along muitiple test paths, the various test paths
shall be indicated with reference letters, as shown in Figure 4. The indications for wavefront deformation shall
be associated with the letters of the input and output test paths, as shown in Figure 4.

@24

Fic

‘7.5

For

: to th

/ ; posit

13/2(0,5) (=)
a). Example 1
P1 932
13/2(0,5); A = 632.8
(=}

_ : ‘
by Example 2 7.6 |
P o . NPT Option

Figure 3 — Examples of indication of the wavefront quality specification . given
referencing an indicated test area | positién

NOTE
meaning

g 10
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CE: 13/3 (1) (0)
CF: 13/1(0,2) ()
DE: 13/3 (1) (o) -
DF: 13/1 (0,2) {=c)

F

Figure 4 — Indication of the wavefront quality specification for an element having multiple test paths

7.5 Indication of type of illumination

For collimated (planar wavefront) illuminatidn, the infinity symbol () shall be appended between parentheses
to the indication for wavefront deformation, as shown in Figure 2. For diverging or converging illumination, the
position of the object point (ob) shall be indicated on the drawing. See Figure 5.

P1 @32

35 40,2

Figure 5 — Example showing the indication of the object point {ob) on the drawing
7.6 Specification of the image-point location

 Optionally, the focation of the image point may be given with a dimensional tolerance. If the image location is

given, it shall be distinguished from the object location by the letters “im” associated with the indicated
position. See Figure 6. ‘

NOTE The wavefronl sagitta error, which is a me'asure of the extent to which this tolerance is uphsld, is not
| meaningful unless the object and image position are indicated. See 3.5.

§£10 © ISO 2003 — All rights reserved
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P1 ¢32

13/20,5); A = 632,8

ob

135 0,2 139,2 20,2

2 P indicates the pupil.

Figure 6 — Example showing the indication of the object and image positions

- 7.7 Indication of target aberrations

Targét values for one or more of the polynomial aberrations defined in Annex A may be specified following the
word “Target”. The form for the indication of a target aberration is as follows:

i is the identifying index of the desired polynomial term,
x is the numerical value of the target.

‘See Clause 8, Example 8.

8 Examples.of tolerance indications

The following examples are designed to illustrate the indications in drawings in accordance with this part of
ISO 10110. _

EXAMPLE. 1 13/— (1); A= 6328
The wavelfront irregularity shall not exceed 1 wavelength (at A =632,8 nm) of smgle-pass wavefront deformatlon No

tolerance for wavefront sagltta error is gwen

EXAMPLE 2.  13/5(—) RMSi< 0,05, 1=632,8

The tolerance for the wavefront sagitta error (in addition to the amount corresponding to the drmensmnal tolerance glven in
the indication of the image posifion) is 5 wavelengths of single-pass wavefront deformation. No specific tolerance is given
for wavefront irreqularity or ratationally symmetric wavefront irregularity, but the rms-value of the wavefront irregularity
shall be less than- 0,05 wavelength of single-pass wavefront deformation. The wavelength for alt wavefront deformatron

specifications is A = 632,8 nm.

EXAMPLE 3 1313 (1/0,5)
The foferance for the wavefront sagitta error is 3 wavelengths of single-pass wavefront defermation. The total wavefront

irregularity shall not exceed 1 wavelength of single-pass wavefront deformation. The rotationally symmetric wavefront
irregularity shali not exceed 0,5 wavelength of single-pass wavefront deformation. The wavelength for all wavefront

deformation specifications is A = 546,07 nm.

© 150-2003 — Ali rights reserved 11
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EXAMPLE 4a  13/3 (1/0,5); (All @ 30)

The wavefront deformation tolerances apply to all possible locations of a 30 mm diameter test area within the opfically
effective test area, The tolerance for the wavefront sagitta error is 3 wavelengths of single-pass wavefront deformation.
The total wavefront irregularity shail not exceed 1 wavelength of single-pass wavefront deformation. The rotationally
 symmetric wavefront irregularity shall not exceed 0,5 wavelength of single-pass wavefront deformation. The wavelength
for all wavefront deformation specifications is 4 = 546,07 nm.

EXAMPLE 4b  13/0,5 — RMSi < 0,05 (all & 12)

For all possible positions of a 12 mm diameter test région within the optically effective test area of the element, the (single-
pass) wavefront sagitta error shall not exceed 0,5 wavelength, and the rms wavefront irregularity shall be less than 0,05
 wavelength of single-pass wavefront deformatlon The wavelength for all wavefront deformation specifications is
A=546,07 nm.

EXAMPLES  13/3(1); A=632,8 '

 The tolerance for the wavefront sagitta error is 3 wavelengths in single-pass; the total wavefront irregularity shall not
exceed 1 wavelength of single-pass wavefront deformation. The wavelength for all wavefront deformation specifications is
¢ 1=632,8 nm. :

. EXAMPLE 6 13/— RMSt < 0,07; 1 =632,8

3 No specific tolerance for the wavefront sagitta error, wavefront irregularity or rotationally symmetric wavefront irregularity is
 given; however, the total rms difference between the experimental wavefront and the theoretical wavefront shall be less
L than 0,07 wavelength of single-pass wavefront deformation. The wavelength for ali wavefront deformation specifications is

- A=632,8 nm,

EXAMPLE 7a  13/— RMSi < 0,07; RMSa <0,03; 1=532,8
' No specific tolerance for the wavefront sagitta error, wavefront irregularity or rotationally symmetrlc wavefront irregularlty is
given; howevar, the rms wavefront irregularity shall be léss than 0,07 wavelength of single-pass wavefront deformation,

wavelength for all wavefront deformation specifications is A = 632,8 nr.

EXAMPLE 7b  13/— RMSt < 0,07; RMSi < 0,04

No specific tolerance for the wavefront sagitta error, wavefront irregularity, or rotationally symmetric wavefront irregularity
is given; however, the total rms wavefront deformation shall be less than 0,07 wavelength of single-pass wavefront
deformation, and the rms wavefront irregularity shall be less than 0,04 wavelength of smg!e pass wavefront deformat:on
The wavelength for all wavefront-deformation specifications-is 2 = 546,07 nm.

EXAMPLE 8 13/—(0,1); 1=632,8
3 Target:

Cy =124
Ci5=~044

‘No specific tolerance is given for the wavefront sagitta error or the rotationally symmetric wavefront “irregularity. The
nominal theoretical wavefront consists of the reference sphere plus the following polynomlal

polynomial = 1,24 Z5 - 0,44 Zis

The tolerance for the wavefront irregularity (compared 1o this asphenc wavefront) is 0,1 wavelength of single-pass
$wavefront deformatlon The -wavelength for all wavefront deformation specifications (tncludmg the target aberrations) is
A =632,8 nm.

MPLES  CE: 13/3(1)
CF: .13/1 (0,2)
DE: 13/3 (1)
DF: 13/1(0.2)

he lolerance for the smgle-pass ray paths from C to E and from D toEis 3 wavelengths for-wavefront sagatta error and 1
velength for wavefront irregularity. The tolerance for the single-pass ray paths from C to F and from D to F is 1
velength for wavefront sagitta error and 0,2 wavelength for wavefront irregularity. The wavelength for all wavefront
eformation spec;ﬁcatlons is A = 546,07 nm. o - o T

2 © 1S0 2003 — All rights reserved
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- Annex A
(informative)

Method for the analysis of wavefronts
using digital interferogram analysis

A.1 General

A.1.1 Introduction

The contents of this annex are important for users of digital interferometers, as well as for developers of
software for interferometry.

The method described in this annex for the analysis of wavefronts is restricted in its applicability to wavefronts
which can be described in terms of polynomials.

Examples of wavefronts to which this method does not apply are those which are coneshaped and those with
spatially localized deformations, . - '

The amounts of the various types of Wavéfront deformation are determined through a process :of succé'ssIVe
fitting and removal of wavefront deformation types. At each stage, the removal of one type of wavefront
deformation exposes the next type of deformation. :

The procedure by which a function of a certain type which “best fits” a certain original function is determined is
the well-known method of least squares, which minimizes the rms difference between the' original fuhction and
the approximation to it. The rms value of a function is defined in A 4.

Various approximations to the wavefront are represented as linear combinations of the -Zernike poiynqmials
defined in A.3. These combinations are given by corresponding coefficients. The coordinates r and @ are as
defined in A.1.3. : : T T e ey

A.1.2 Interferometric reference wavefront

The interferometric reference wavefront is a physically existing wavefront generated by the interferometer, to
represent the nominal theoretical wavefront, Typically, the interferometric reference wavefront consists of a
planar or spherical wavefront corresponding to the reference sphere defined in 3.18. If the nominal theoretical
wavefront is weakly aspheric, it may be possibie to use a planar or spherical reference wavefront and account
for the asphericity through software.” If: the nominal theoretical- wavefront is strongly -aspheric, the
interferometer shall have a physical means, such as a "null lens” or a computer-generated hologram, of
modifying the asphericity of a wavefront, Ini principle, it would be possible to create an aspheric interferometric
reference wavefront to match the desired asphericity of the test wavefront. It is more common, however, to
use a null lens or computer-generated hologram to remove the desired amount of asphericity of the test beam,
so that it may be compared with a spherical reference beam. : - ‘

A.1.3 Coordinate system

The wavefront under test is described in polar coordinates. by the variables r and & the origin of the
coordinate system is the centre of the test area, and r Is normalised to 1 at the edge of the test area. For non-
circular test areas, the “centre” of the test area refers to its centroid, and the radius of the test area refers to

the distance from the centre to the most distant point. The parameter r ranges therefore between zero and 1.
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mmonly called Zernike polynomials ~ Zo(r. 6}, Z4(r,6) ..., given in A.3.2. These linear combinations are given

Eﬁous approximations to the wavefront are represented as linear combinations of the polynomials -
corresponding coefficients Cp, Cy, ...

1.4 Single-pass and double-pass measurements

Wavefront deformation is defined in 3.1 in reference to a wavefront which passes through or, in the case of
eflective optics, reflects from the optical element once (single-pass). If the element is tested in this manner, .
he equations given in this annex may be used directly. (Figure B.1 gives an example of a single-pass

terferometer).

ery often optical elements are tested in a double-pass arrangement, an example of which is shown in
igure B.2. If the element is tested in double-pass, the results of all the equations given in this annex will have
be adjusted appropriately to yield single-pass results. In many cases, this adjustment is simply to divide the
besults by two; however, this is not always true. See Notes 1 and 2 of 3.1.

A.2 Procedure

A.2.1 General

Fhe procedure for finding the amounts of the various wavefront deformation types is given in A.2.2 to A28.
Although this procedure is described in terms of the Zernike polynomials, any mathematicaily equivalent
wrocedure based on another sef of functions may be used. However, since the order of operations is important
Pwhen using non-orthogonal polynomials, the equivalence between the procedure used and that given here
shall be maintained at each step of the entire procedure. This is of particular importance when the test region

s not circular {see A.3.3).

A.2.2 Total wavefront deformation

fhe total-optical-path-difference function, OPD(r,6), refers to the difference between the test and reference f
wavefronts, as measured by the: interferometer, including any tiit between the test wavefront and the ;
interferometric reference wavefront. The total-wavefront-deformation function, TWD(r, ), refers to the optical

ath difference after subtraction of the best-fitting plane, P{r.6).

. peciﬁcaﬂf, P(},é) is given by the linear function

P(r6) = CoZylr,6) + €1Z4(r.6) * CoZy(r 6.

here ihe t;befﬁcients Co C‘1 and C, are found by the Iea;st—équarés procedure. #rom this, the total wavefront

deformation function TWD(r,6) is found By subtracting the best-fitting pfane and any- target aberrations
§specified according to 7.7 from the measured wavefront deformation Wir,.0): :

L TWD(r.8) = W(r8)-P(r.8)- > .C:Z;(r.6)
where the coefficients C, are the indicated amounts of the target aberrations (sée 1.7).

A.2.3- Total rms wavefront deformation RMSt

' The fotal rms wavefront deviation, RMSt (3.10), is equal to the rms valué of the total-wavefront-deformation
function, TWD (r,6). - S | o

-

© ISO 2003 — Al rights reserved.
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A.2.4 Approximating spherical wavefront and wavefront sagitta error
The best approximating spherical wavefront is found from the total wavefront deformation function. For
reasonable amounts of wavefront deformation, this can be approximated by the parabolic deformation defined
by the Zernike term number 3:

Approximating sphere = CaZy(r.6),
where the coefficient C3 is determined by the least-squares method. (For non-circular test areas, the
restrictions of Clause 5 and of A.3.3 apply.} The wavefront sagitta error (3.5) is then determined from the
coefficient Cy:

Wavefront sagitta error = 2C,

A.2.5 Wavefront irregularity function

The wavefront irregularity function IRR(r, 8} is the difference between the total wavefront deformation function
TWD(r,8) and the approximating sphere. This corresponds to the function remaining after the approximating
sphere has been subtracted from the wavefront. ‘

IRR(r, ) = TWD(r, 6) — C3Z4(r.6)

A.2.6 Wavefront irregularity and rms wavefront irregularity, RMSI

The rms wavefront irreqularity RMSi (3.11) is equal to the rms value of the wavefront irreguiarity function. The
wavefront irregularity (3.7) is equal to the peak-to-valley value of the wavefront irregularity function.

Some form of smoothing (e.g. convolution or replacement of the function with a polynomial of sufficient order)
is usually required to remove the effects of isolated surface defects (scratches, local material defects, etc.)

scattering of light from dust particles and measurement "noise”, which are not part of the surface-form
deviation. The nature of the smoothing should be reported as part of the test report for the optical element.

A.2.7 Approximating aspheric wavefront and rotatlonally symmetric wavefront irregularity

- The approximating aspheric wavefront AAW(r,8) is obtained by a least-squares fit of a series of rotauonally
symmetric Zernike polynomials to the irregularity functlon IRR{r, &)

AAW(r, ) = Cg Zg(r,6) + C15 Z45(r.0) + Cpg Z34(r. 6) + Cys Z35(r.6) + ...
(For non-circular test areas, the restrictions of Clause 5 and of A.3.3 apply.)
In most cases, the approximation is sufficiently accurate using the four terms given above. Higher-order terms
may be used if necessary. In cases where spatualfy localized wavef_ront deformations are present a

polynomial representation of the wavefront deformation is inappropriate.

The rotationally symmetric wavefront irregutarity (3.9) is equal to the peak-to-valley value of the approximating
aspheric wavefront AAW(r,8). This may be determined in practice by calculating the value of AAW(r,6) at

discrete points located on a sufficiently fine grid and taking the difference between the highest and lowest f

values.

NOTE The topic of this subclause is part of a more general problem which will be addressed in an International
Standard which will be published in the future,

A.2.8 The rms wavefront asymmetry RMSa
The approximating aspheric wavefront AAW(r, ) is subtracted from the |rregulanty function IRR(r,B) The rms

wavefront asymmetry RMSa (3.12) is the rms value of the function WhICh remains.

© 150 2003 — All rights reserved 15

| ‘3

FO 10

l.3 Ze

L31G

’.he set ¢
ver a ci
;e simpli
e no lo
Fill be us

A3.2 L

240,
Zg(r.
] - Za(r,
Zgtr,
ng_(‘f.t
Ziolr
‘ Zy4dr,
Zigke
Z,4fr,
- Zaalr,
Z,5(r,
 Zygln
21-;(m

213()',
L Z19(H
Zzo(r.t
" Zoalre
' Zaalne

:ﬁ&di_scus

_Q-gamon pr




Zofr.6)
Z(r.6)
Zy(r,6)
Z3(r.6)
Zy(r.6)
Zyr.0)
Zg(r.9)
Z:(r.&)
'Zaff: &

Zyolr
Z14(r,6)
Zyr9)
213;(" 51
Zi4(r 8
Z45(r.6)
2Z4g{n )

Z15(r8)
Z,r6)
Zy0fr.6)
Zy4(r.6)
Z(r8)

Zifr.9) -

7.'.17_(}', &)-

A.3.1 General

I1SO 10110-14:2003(E)

A.3 Zernike polynomials

A.3.2 List of Zernike polynomials

1
rcosé

rsinéd

2r2 -1

r2cos 26

r2sin 26

(32~ 2)- rcosd

(3r2°-2) - rsing
6A_62e1

r3¢§s 3¢

risin 36

(42 ~ 3) - r2cos 26

(42—~ 3)- sin 26

{(10/% - 12/2 + 3) - rcosd
(1074 - 12,2 + 3y - rsing
2015 — 3014 + 12,2 - 1
cos 4g |

Asin 49

(52 - 4) - Pcos 36

52— 4)-Bsin30
(154 - 20:2 + 6) - r2c0s 28
(1574 ~ 2012 + 6) - r2sin 20

(3518~ 804 + 30r2 - 4} - rcos®

Fe

The set of polynomials identified by Zernike and Nijboer!) as being orthogonal in the sense of rms integration
over a circular area, are commonly used for interferogram analysis. For circular test areas, the analysis may
be simplified by the orthogonality properties of these polynomials. For non-circular pupils, these polynomials
are no longer orthogonat and no longer offer any advantage over other sets of functions; however, they may
still be used, provided that the analysis techniques given in Clause A.2 are used. See A.3.3.

E) A discussion of these polynomials and their properties is given in M. BorNn and E. WOLF, F’nnc:pfes of Optics,
ergamon press, New York, 7th edition, 1999,

® IO 2003 — Al rights reserved.
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Zys(r@) = (35/5-60/4 +30r2-4) - rsing

Zo4(r6) = T0rB- 140,58+ 90,4 — 20,2 + 1

Zy5(r,6) = Scos59

Zys(r,®) = rBsin56

Zyn® = (6:2-5)- Acos 48

Zog(r.0) = (6r2-5)-rAsin 40

Zoo(r6) = (2174 -3012 + 10) - cos 30

Zyo(n®) = (214 -3012 + 10) - Bsin 30

Zy(rn8) = (56r5- 1054+ 60r2 - 10) - r2cos 26
Zyp(r.6) = (56r8 - 1054 + 60,2 — 10) - 12sin 26
Zy3(r6) = (126/8-280/5 + 210/4 - 60,2 + 5) - rcosd
Zy4(r6) = (126/8 - 280/5 + 2104 — 60,2 + 5) - rsing
Zas(r.® = 25210 _630:8 + 5605 — 210/4 + 30,2 — 1

A.3.3 Non-circular test areas

A.3.3.1 General

The Zernike polynomials are only orthogonal if the test area is circular and enough sample points are taken so
that an integral is approximated well by summation over the points. If this condition is met, the polynomials are
orthogenal, and as a consequence, their coefficients may be determined through the least-squares method,
and the results are the same regardless of the grouping of the terms. For-example, the coefficient C3 may be
determined by fitting the single term C3Z3 to the wavefront, or by fitting the more complex. expression
CaZy + CgZg + Cy5Z45 + CoyZy4, and the values of C, will be the same in both cases.

If the test area is non-circular, the Zernike polynomials are not orthogonal, and the values obtained for C5 in
the two cases described above will not necessarily be the same.

In spite of this, the Zernike polynomials may still be used for the analysis of the wavefront deformation,
provided that the procedure described in A.2 is followed. A.2 reflects the stipulations of Clause 5, and
prescribes a particular order for fitting the terms and subtracting them; this procedure ensures that the correct
values for the wavefront deformation types are obtained.

In accordance with Clause 5, A.2 states that the polynomial terms shall be fit to and subtracted from the
wavefront in a particular order; it is not acceptable to fit several terms at once. In particular, it is not
permissible to mix the term C3Z, with the aspheric terms, and it is not permissible to mix terms with rotational
symmetry with terms that do not have symmetry. - : :

A.3.3.2 Commercially available programs

In some commercially available programs, the polynomials are fit in groups of terms. For example, a
polynomial consisting of the first nine terms might be fit to the wavefront. According to Clause 5, the coefficient
C; obtained in this manner shall not be used in the determination of the approximating spherical wavefront.
Furthermore, the coefficient Cy obtained in this manner shall not be used in the determination of the
approximating aspheric wavefront. Instead, the coefficient C3 Is to be determined by fitting only the term C3Z;
to the wavefront, after the best-fitting plane P(r,6) has been removed. Similarly, in determining the coefficient
Cg for the approximating aspheric wavefront, only terms of the type shown in A.2.7 are allowed. Specifically,
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Clause 5 states that terms that are not rotationally symmetric shall not be included in the fit, and the parabolic
term C3Z5 shall not be included in the fit.

A4 Root-mean-square value of a function

The root mean square of a function f over a given area A4 is given by either of the following integral
expressions: . -

'a) Cartesian variabfes x and y:

1

J L)) axey |2

= x¥
| RMSvaIue—. ‘ ”dxdy

xy

I where{x, y) e 4

by Polar variables r and &

1
()} rarde|?
RMS value = | &£ :
IErdrdH
r

oy

whefe"(r. Qe4d
 This integral may be approximated by a corresponding summation, provided that a sufficient number of cata
: Cpoints‘ is used: o g ' .
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Annex B
(informative)

Visual interferogram analysis

B.1 General

B.1.1 Information .

This annex is intended as an aid to understanding this part of 1ISO 10110. It is useful for the ihterpretation of
interferograms, but the guidelines given for the estimation of the amounts of the various types of wavefront ;

deformations do not serve to define those wavefront-deformation types.

The purpose of this annex is to demonstrate the visual appearance of interferograms for the different types'of

wavefront deformation. The appearance of the fringes depends on whether the optical element is tested in
single-pass or in double-pass. See B.1.6. ' '

This annex deals exclusively with the following types of wavefront deformation: wavefront sagitta error,
wavefront irregularity and rotationally symmetric wavefront irregularity. The rms residual wavefront
deformation types (defined in 3.10 to 3.12) cannot be determined by Vi_s_ual inspection.

B.2 and B.3 describe the anafyéis of circular test areas. Special considerations for non-circular test aieas 303
given in B.2.5, '

The analysis of fringe patterns is treated more fully in many textoooks2).
B.1.2 Test and reference wavefronts, test and refefence arms of the interferomata
When the wavefront deformation of an optical element is tested interierometricaily, a high-quaiity wavsiront

(known as the "reference wavefront”) is allowed to interact with a wavefront which has been’tfans:qf?ted
through or, in the case of reflective optics, reflected from, the element under test. This latter wavefront wiii ne

referred to as the “fest wavefront’. The two optical sub-systems of the interferometer wiich produce the §

reference and test wavefronts will be referred to as the “reference arm” and the “test arm” of the
interferometer, respectively.

B.1.3 Fringes, fringe spacingé

The interaction of the reference and test wavefronts produces areas of high and low light intensity, known as
“fringes”. The number of spacings between such fringes is a measure of the deformation of the wavefront. If
the test wavefront is tilted relative to the reference wavefront, then the curvature of the fringes, measured
refative to the fringe spacing, is a measure of the deformation of the wavefront. The scale factor relating the
number of fringe spacings to the wavefront deformation, as defined ih 3.1, depends on the number of times
the test wavefront is transmitted through or reflected from the element under test. See B.1.6.

B.1.4 Interferometric tilt

Two methods are used for estimating the amounts of wavefront sagitfa error and wavefront i.rregula.rity,
depending on the amount of relative tilt between the test and reference wavefronts. The method without tilt is
applied chiefly when the wavefront deformation is large. The method employing tilt is generally more accurate.

The relative tilt between the two wavefronts is not a measure of the wavefront deformation.

2} Forexample: MALACARA, D. ed., Optical shop testing, Wiley, New York, 2nd edition, 1992, -
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' B.1.5 Determination of the sign of the deformation

E In order to determine the sign of the deformation of the wavefront or regions of the wavefront, it is sometimes
b necessary to slightly shorten or lengthen the test arm of the interferometer, in order to note the behaviour of
 the interferometric fringes when this is done. This may be accomplished by pushing very gently on one of the
| mirrors in the test arm of the interferometer. See B.1.6.

f B.1.6 Interferometric arrangements for testing optical elements

3 B.1.6.1 General

L There are many possible arrangements for testing optical elements interferometrically. Because the various
- testing geometries have different sensitivities fo the quality of the element under test, the interpretation of the
L test results depends on the arrangement used.

Interferometric arrangements in which the light beam passes through (or reflects from) the element under test
- only once, known as “single-pass” methods, correspond to direct measurements of wavefront deformation.

. More commonly, an arrangement is used in which the light beam passes through (or reflects from) the
i element under test twice. Such arrangements are known as “double-pass” methods and, in such cases, the
| measured results must be adjusted to account for the second transmission of the light through the element.

L In many cases, the single-pass wavefront deformation may be obtained by dividing the results of a double-
 there are caSes_in which this is not frue. See 3.13.

: 'B.1‘.6.2 Testing elements in single-pass

The definition of wavefront deformation (3.1) makes reference to a wavefront tr_én_smitted once throug'h, or
 reflected once from, the optical system. Optical testing methods in which the light bean travels once through
the optical element under test will be referred to as. “single-pass” mMéthods. : '

' Figure B4 shows one possible interferometric method for testing optical elements in this way.

 In the case of single-pass optical testing, one fringe spacing.visfble in the int_erférogram corrésponds to one
- wavelength of wavefront deformation as defined in 3.1,

; s
/
2 L3
: . e i
1} 74— 5

a) Optical efement without power

Figure B.1 — Testing arr optical element in _single-pa.ss

5_20 ‘ © IS0 2003 — All rights reserved
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Key .
1 source 5 push to shorten test arm
2 reference arm 6 element under test
3 testarm : 7 auxiliary lens
4  detector

' Figure B.1 (continued)

B.1.6.3 Testing elements in double-pass

Optical elements are often tested in a “double-pass” configuration, in which the wavefront passes through or,

in the case of reflective optics, reflects from the element under test twice, as shown in Figure B.2.

in the case of double-pass testing, the additional wavefront deformation caused by the second-transmission
through the element will have to be accounted for when comparing the measurement results with the specified
tolerances. If the wavefront is not severely deformed by passing once through the element under test, and
reflects from a high-quality mirror, it returns through the identical portion of the test element .to the
interferometer. In this case, the observed deformation of the wavefront is twice the (single-pass) wavefront
deformation as defined in 3.1, that is, the wavefront deformation (as defined by 3.1} is one-half the observed
wavefront deformation. .

If the wavefront is severely deformed by the element under test, the individual rays do not pass through the
same positions in the element .under test on their return path, and the wavefront deformation is not exactly
twice that of the single path case. Also, if the cross-section of the test beam is distorted in passing once
through the optical system, the relationship between double-pass measurements and the single-pass
wavefront deformation is more-complex than simply a factor of 2. See Notes 3 and 4 to 3.13. : ‘
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a) Optical element without power

b} 'Optical element with power

! Key )
| 1 fizeau interferometer (reference arm inside) 4 auxiliary reflecting surface
i 2 reference surface 5 push to shorten test arm
i 3 testarm 6 element under test
Figure B.2 — Testing an optical element in double-pass , _ . .  _ -
| B.2 Estimation of wavefront sagitta error and wavefront irregularity .

§ 821 General | -
| The wavefront sagitta error can only be-determined if the positions of both the abject point and the image point
§ are specified. Often, when testing optical elements and systems interferometricaily, only one of these two
E positions is specified, and the sagitta error cannot be determined; however, the iegularity. can stilt be
§ determined. o

: The determination of the wavefront sagitta error is simplest if the point source of the interferometer is placed
 at the indicated object point, and the mirror which reflects the beam back toward the interferometer is placed
b concentric with the indicated image point. In the following, it is assumed that this is.the case. (if this is not the
[ case, the distances between the indicated and actual object points and the indicated and actual image points

E must be taken into-account.) If dimensional tolerances are associated with the indications of the positions of

& minimize the sagitta error.

 Usually, the wavefront deformation. is dominated by wavefront sagitta error and/or by a kind of asymmetry in
| the sagitta error. In the case of asymmetry, cross-sections of the wavefront in different directions show

§ different amounts of sagitta error. Other kinds of wavefront irregularity are possible; the estimation of their

¥ amounts is more difficult. The estimation of the amounts of wavefront sagitta error and wavefront irregularity

 for the commonly occurring cases is described in B.2.2 and B.2.3, and a more general procedure for unusual

& types of irregularity is described in B.2.4. The reference given in Footnote 2 (see B.1.1) contains a mere
 thorough discussion of interferogram analysis. ' _
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B the object and image points, the source and the reflecting surface may be moved within these tolerances to




ISO 10110-14:2003(E) E

B.2.2 Analysis of interferograms without tilt : doubls

In the absence of all other types of wavefront deformation, wavefront sagitta error causes an interference
pattern having concentric, circular fringes. The radii of the fringes increase with the square root of the fringe
number, counting from the centre of the fringe pattern.

If a small amount of asymmetric deformation is present, the circles distort into ellipses, as shown in }
Figure B.3. If the test wavefront is concave with respect to the reference wavefront, the fringes will move 3
toward the centre of the fringe pattern when the test arm of the interferometer is shortened. If the reverse is
true, the test wavefront is convex with respect to the reference wavefront.

m = 3 fringe spacings
m' = 1 fringe spacing

Figure B.3 — Example of a double-pass interferogram of an optical element with 1 wavelength
of wavefront sagitta error and 1 wavelength of wavefront irregularity

To estimate the amount of wavefront sagitta error and wavefront irregularity, let m and m’ be the numbers of
fringe spacings seen in the fringe pattern, counted from the centre to the edge, in the directions which give tr.e
largest and smallest numbers of fringes, respectively?). In the case of elliptical fringes, the sagiia enoi i3
given by the average of m and m', that is: '

Wavefront sagitta error (effiptical fringes, single-pass) = m;m (B.1)

If the element is tested in double-pass, the results of Equation (B.1) shall be divided by 2, if the assumptions
in B.1.6.3 are met.

In the case of elliptical fringes, the wavefront irregularity is equal to the absolute value of the difference of the
fringe counts m and m': : o o : o

Wavefront irregularity (elliptical fringes, single-pass) = |m ~ m| , (B.2)

if the element is tested in double-pass, the results of Equatidn {B.2) shall be divided by 2, if the assum.pﬁiqns
in B.1.6.3 are met, : . o .

EXAMPLE Figure B.3 shows the double-pass interferogram of an optical element lested as shown .in Figqre B.2. In
Figure B.3, the values of m and m' are 3 and 1 double-pass frings spacings, respeclively. Therefore, the immediate result N
of Equation (B.1)is (3 +1)/2=2 wavelengths; ho_wever. this is a double-pass interferogram, so ghc_a wavefront sagitta error

3} Usually, these two direc_tions are oriented at 90° to one another, but this need not be the case. -
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f is one-half this, or 1 wavelength. Similarly, the wavefront irregularity appears to be |3 —1[ = 2 wavelengths, but since this is
I a double-pass interferogram, the wavefront irregularity is 1 wavelength.

 If alarge amount of asymmetric deformation is present, the effiptical fringes may be broken into approximately
¢ hyperbolic fringes, as shown in Figure B.4. In this case, when the test wavefront is moved slightly toward the
b interferometric reference wavefront, some of the fringes will move toward the centre of the fringe pattern and
- some will move away from the centre, :

m =25 fringe spacings
j ' =1,5 fringe spacings

Figure B.4 — Example of a single-pass interferogram showing 0,5 wavelength of
wa.afront sagitta error and 4 wavelengths of wavefront irregularity

i ; In the case of hyperbolic fringes, the wavefront sagitta error is equal to half the difference between the
numbers of fringe spacings:

Wavefront sagitta error (hyperbolic fiinges, single-pass) =|1"—"2i' _ - (B3)

| If the element is tested in double-pass, the resuilts of Equation (B.3) shall be divided by 2, if the assumptions

 inB.1.6.3 are met.

. The wavefront irregularity, in the case of hyperbolic fringes, is given hy the sum of the numbers of the fringe
| counts: '

Wavefront irregularity (hyperbolic fringes, single-pass) = m+m' (B4)

| If the element is tested in double-pass, the results of Equatior (B.4) shall be divided by 2, if the assumptions
 inB.1.6.3 are met. |

f EXAMPLE™ ' © Figuré B.4 shows the single-pass interferogram of an optical element tested according to the
p arrangement shown in Figure B.1. In Figure B.4, the values of m and =" are 2,5 and 1,5 wavelengths, respectively, so the
& wavefront sagitta error is |2,5—1,5[I 2 =0,5 wavelength, and the wavefront irregularity is 2,5+ 1,5 = 4 wavelengths,
& (Since this is a single-pass interferogram, the results are not divided by2.)

8.23 Analysis of fringe pattern with tilt

:,Th'is method requires the fringes to be observed twice, with the tilt between the test and reference wavefronts
. adjusted so that the fringes are oriented in two different directions.

fWhen the reference wavefront is tilted with respect to the test wavefront, the fringes appear as in Figure B.5. If
P only the wavefront sagitta error is present, the fringes appear as parts- of concentric circles, with the radii of

'h;&_ﬁ-:t’ :
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the fringes increasing with the square root of the fringe number, counting from the apparent centre of the
fringe pattern. If other wavefront deformation types are also present, the fringes are not parts of concentric
circles.

a) Orientation 1 : b) Orientation 2
h{#) curvature of fringe closest to centre of interferogram
5 (s') spacing of the fringes '
m=his

m = ks
4 The arrows indicate the direction of motion of fringes when the test arm is shortened.

Figure B.5 — Example showing double-pass interferograms of an optical element with
0,15 wavelength of wavefront sagitta error and 0,9 wavelengths of irregularity,
with the interferometric tilt oriented in two directions ,

To estimate the wavefront sagitta error and the wavefront irregularity, the curvature of the test wavefront in the
cross-section parallel to the fringes is estimated, for the two directions of tilt which give the maximum and
minimum amounts of curvature. (See Figure B.5). In each case, the number of fringe spacings m is equal to
the curvature k of the fringe closest to the centre of the interferogram, divided by the spacmg s of the fringes,
which is also measured as close as possible to the centre of the test area.

In addltlon it is necessary to note (for both directions of the tilt) the direction of motion of the fringes when the
test arm of the interferometer is shortened;

If the fringes for both directions of it move toward the apparent centre of curvature of the fringes, or if the
fringes for both directions of tilt move away from the apparent centre, then the sagitta error exceeds the
irreguiarity. Equations (B.1} and (B.2) are used to estimate the wavefront sagitta error and the wavefront
irregularity, respectively. (In the case of double-pass measurement, the results of Equations (B. 1) and (B 2)
are to be dmded by 2, ifthe assumpt:ons in B.1.6.3 are met.)

If one set of fringes moves toward its apparent centre, and the other fringe pattern moves away from its
apparent centre when the test arm is shortened, then the irregularity exceeds the sagitta error, and
Equations (B.3) and (B.4) are used to estimate the amounts of wavefront sagitta error and wavefront
irregularity. (In the case of double-pass measurement, it is appropriate to divide the result of Equations (B.3)
and (B.4) by 2, if the assumptions in B.1.6.3 are met.)

EXAMPLE Figure B.5 shows double-pass mterferograms of an optical element tested with tilt. In Figure B.5a), the
fringes move toward the apparent centre when the test arm is shortened, and in Figure B. 5b), the fringes move away from
the apparent centre, so Equations (B.3) and (B.4) apply, with the results divided by two, according to B.1.6.3. In
Figure B.5a), the curvature A is approximatély 1,2 times the fringe spacing s, so m = 1,2. In Figure B.5 b), the curvature 4’
is B0 % the fringe spacing s', so m' = 0,8, The Initial result of Equation (B.3) is 0,3 wavelength; after dividing by 2 to
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account for the double-pass measurement, one finds that the wavefront sagitta error is 6,15 wavelength. Similarly,
Equation {B.4) yields a value of 1,8 wavelengths; after accounting for the double-pass measurement, it yields a value for
the wavefront irregularity of 0,9 wavelength.

B.2.4 Unusual forms of irregularity

It is possible that the wavefront deformation be a maximum at some point inside the test area, rather than at
the edge. When tesfing wavefronts with no tilt between the test and reference wavefronts, this leads to closed
fringes which may not be concentric with the centre of the test area, as shown in Figure B.6. In cases such as
this, it is necessary to note which fringes move away from the centre and which toward the centre when the
test arm of the interferometer is shortened. Those which move toward the centre may be regarded as
“positive”, and the others as “negative”.

2 Motion

Figure B.6 — Example of an unusual double-pass interferogram, showing the direction of motion
of the fringes when the test arm of the interferometer is shortened

The wavefront sagitta érror is determined according fo Equation (B.1), where m and m' represent the
cumulative numbers of fringes measured in two representative directions. In the vertical cross-section of
Figure 8.6, tt}ere are 4 fringe spacings in the negative direction, followed by 4 fringe spacings in the positive
direction, giving a value of.zero for m. In the horizontal direction, there are 2 negative and 2 positive
wavelengths, again giving ' = 0. According to Equation (B.1), the wavefront sagitta error is (0 + 0)/2 = 0.

The wavefront irregularity is determined by finding the highest and lowest departures from the theoretical
expected fringe pattern, which is that the fringes are concentric circles with radii increasing as the square root
of the fringe number. The irregularity is the sum of the absolute values of the highest and lowest departures
from the pattern. For the pattern of Figure B.6, the sagitta error is zero, so the theoretical expected. fringe
paftern has no fringes. The lowest departure from this is — 4 fringe spacings (at the centres of the two outer
oval patterns), and the highest departure from this is zero. Therefore, the wavefront irregularity appears to be
{01 + |-4] = 4 wavelengths; however, because this is a double-pass lnterferogram the wavefront irreguianty is
ha!f the observed deformatlon thatis, 2 wavelengths

| ..B.2.5 N'on-circular test areas

Accordlng to the definition of wavefront sagitta error (3.5) the wavefront sagitta error is based on the spherical
wavefront which best approximates the test wavefront. When using visual analysis methods, the
approximating spherical wavefront may be chosen so that the irregularity (which is the difference between the
approximating spherical wavefront and the test wavefront) is evenly distributed around the boundary of the
test area. This requires that wavefront sagitta error and wavefront irregularity be evaluated by a method
similar to that described in B.2.2, except that the calculatlons must take into account the dimensions of the
test area in the two cross-sections in which m and m' are measured.

This method is reasonably accurate for simple forms of wavefront deformation (that Is, those which are
second-order in x and y}; for an accurate evaluation of more complex forms, digital methods are necessary.
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E EXAMF
¥ and 23

For non-circular test areas, the “centre” of the test area refers to its centroid (centre-of—grav:ty") and its
“radius” is equal to the distance from the centre to the most distant point in the test area.

g wavele
The cross-sectional curvatures m and m' are determined in the same way as in B.2.2, using the description of | divided
the case with or without tilt, as appropriate. The directions along which m and m' are determined are given by  Wavefre
the symmetry of the wavefront deformation; these directions are not necessarily related to the shape of the §
test area. - Inthe
Let m and »' be the cross-sectional curvatures in the two directions of symmetry, from the centre to the edge
of the test area, as shown in Figure B.7. Let a be the distance from the centre to the edge of the test area in § W
the direction along which the curvature m is measured. Similarly, let # be the distance along which the |
curvature m'is measured. Let R be the radius of the test area, as defined above.
b If the ¢
g in B.1.
L Theirr
W
| T
f inB.1.
.' If there
- note (f
E is shor
F if the 1
. J cases,
= 36 nim ’ irregul;
m =3, fringe spacings; a=33mm g respec
m' =04 fringe spacings;  #=23 mm 2
 If one
Figure B,7 — Example of a dodble-pass Interferogram with a non-circular test area, showing 4 225;25
1,6 wavelengths of sagitta error and 1,1 wavelengths of irregularity - results
in the case of elliptical fringes and a non-circular test area, the sagitta error is determined by B3 F
- 2 , 3 The es
Wavefront sagitta error (elliptical fringes, single-pass) = gm +:1 ) (B.5) §: deform
a +b )
' E fno il
If the element is tested in double-pass the resuits of Equation (B.5) shall be divided by 2, if the assumptions & circles,
in B.1.6.3 are met. § sagitta
: S ; E Theref
In the case of elliptical fringes and a non-circular test area, the irregularity is determined by f -
' £ In the
IZR a? —bzm)l | 3 sag;tta!
Wavefront irregularity (elliptical fringes, single-pass) B.6) | 2 strai
g y (ellip g gle-p | az(a b ) l (B.5) j straigh
. L case, |

. : i circula
If the element is tested in double-pass, the results of Equation (B.8) shall be divided by 2, if the assumptions |
in B.1.6.3 are met.
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EXAMPLE In Figure B.7, the values of m and m" are 3,6 and 0,4 wavelengths, measured over distances of 33 mm
and 23 mm respectively. The radius of the test area is 36 mm. The immediate results of Equation (B.5) and (B.6) are 3,2
L wavelengths and 2,16 wavelengths, respectively. Because this element was tested in double-pass, these results are to be
 divided by 2 according to 8.1.6.3. Thus, the wavefront sagitta error according to 3.5 is 3,2/2 = 1,6 wavelengths and the
L wavefront irregularity according to 3.7 is 2,16/2 = 1,1 wavelengths.

In the case of hyperbolic fringes, the sagitta error is found by the equation:

R2(m-m) e

Wavefront sagitta error (hyperbolic fringes, single-pass) =

I the element is tested in double-pass, the results of Equation (B.7) shall be divided by 2, if the assumptions
in B.1.6.3 are met.

The irregularity is found in the case of hyperbolic fringes by the equation:

2R%(a?m' + b"‘m)
Wavefront irregularity (hyperbolic fringes, single-pass) = > ( 5 2) {B.8)
a“la“+b

If the element is tested in double-pass, the results of Equation (B.8) shall be divided by 2, if the assumptions
[ inB.1.6.3 are met. ' '

 if there is tilt between the interferometric reference wavefront and the wavefront under test, it is necessary to
F note (for both directions of the tilt) the direction of motion of the fringes when the test arm of the interferometer
§§ s shortened. '

i If the fringes, in both cases, move toward the apparent centre of the fringe pattern or if the fringes, in both
§ cases, move away from the apparent centre of the fringe pattern, then the sagitta error exceeds the
- jrregularity, and Equations (B.5) and (B.6) shall be used o estimate the sagitta error and the irregularity,
respectively. (In the case of double-pass testing, the results are to be divided by 2, according to.B.1.6.3.)

-~ ff one set of fringes moves toward its apparent centre, and the other fringe paftern moves away from its
~ apparent centre, then the irregularity exceeds the sagitta error, and Equations (B.7) and (B.8) shall be used to
estimate the amounts of sagitta error and irregularity, respectively. (In the case of double-pass testing, the
results are to be divided by 2, according to B.1.6.3.) :

B.3 Rotationally symmetric wavefront irregularity

@ The estimation of this deviation by visual methods i$ difficult if large amounts of other types of wavefront
deformation are present. For this reason, digital methods of interferogram analysis are preferred.

B [fnotilt is present between the test wavefront and the reference wavefront, the fringes appear as concentric
& circles, but their radii do not increase with the square root of the fringe number, as would be the case with
B sagitta error. Visual observation of this property is difficult and becomes inaccurate for small deviations.
§§ Therefore, the assessment of this type of wavefront deformation is practical only in the presence of filt.

b In the presence of tilt, the fringes are W- or M-shaped, depending on the direction of tilt. in the absence of
L sagitta error, the two ends and the centre of the fringe nearest the centre of the fringe pattern can be joined by
b a straight fine. In this case, the wavefront irregularity is represented by the deviation of the fringes from
- straightness. If sagitta error is present in the wavefront, the fringes are curved, as shown in Figure B8.8. in this
¥ Case, the wavefront irregularity may be estimated by the deviation of the fringe nearest the centre from a
b circular arc joining the two ends and the centre of the fringe, as indicated in Figure B.8.
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The wavefront irregularity is equal to the maximum deviation # of the fringe from a circular arc, divided by the
fringe spacing s. The deviation k is measured perpendicular to the circular arc at the point of maximum
departure.

Figure B.8 — Example of a double-pass interferogram showing 0,15 wavelength
of rotationally symmetric wavefront irregularity

Foi single-pass testing, the rotationally symmetric irregularity is given by
Rotationaily symmetric wavefront irregularity (single-pass testing) = L (B.9)
g

it the element is tested in double-pass, the results of Equation (B.9) shall be divided by 2, if the assumpticns
in B.1.6 3 are met.

EXAMPLE in Figurs B.8, tho deviation 4 of the central fringe from straightness is 30 % of the fringe spacing s, so the
rotationally syrmetric wavefront irregularity as measured in double-pass is 0,3 fringe spacing (the immediate result of
Equation {B.S)). According to B.1.6.3, this result is to be divided by 2, glvmg a value for the rotationally symmetric
wavefront irregularity (as defined in 3.9) of 0,15 wavelength.

The degree to which the wavefront deformation is rotationally symmetric is observed by repeating the above
test with the titt adjusted so that the fringes are oriented in another direction. The wavefront deformation is
rotationally symmetric if the appearance of the fringes is the same for all orientations of the fringes. The
rotationally symmetric wavefront irregularity is that part Qf the deformatlon which remains the same for alt
orientations of the fringes. .

B.4 Target aberrations

The visual analysis of interferograms when target aberrations are specified is difficult and not recommended.
In principle, it is possible to draw or otherwise generate the interference pattern corresponding to the target
aberrations, and examine the difference between this and the actual interferogram. However, the visual
appearance of the actual interferogram depends on the amount and orientation of tilt present. Similarly, the
exact choice of the radius of the reference sphere (which often has a generous tolerance) influences the
visual appearance of the interference pattern. For these reasons, the precise generation of the theoretical
interference patiern with which the actual interferogram should be compared is generally not possible, in
which case an accurate evaluation can be obtained only through the use of digital analysis techniques.
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